- 1. The end behavior describes the behavior of a graph as *x* approaches positive infinity and negative infinity.
- 2.  $h(x) = -3x^4 + 5x^{-1} 3x^2$ ; h(x) is the only function that is not a polynomial.
- 3. polynomial function;  $f(x) = 5x^3 6x^2 3x + 2$ ; degree: 3 (cubic), leading coefficient: 5
- **4.** polynomial function;  $p(x) = 6x^4 4x^3 + \frac{1}{2}x^2 + 3x 1$ ; degree: 4 (quartic), leading coefficient: 6
- 5. not a polynomial function
- **6.** polynomial function;  $g(x) = 13x^2 12x + \sqrt{3}$ ; degree: 2 (quadratic), leading coefficient: 13
- 7. polynomial function;  $h(x) = -\sqrt{7}x^4 + 8x^3 + \frac{5}{3}x^2 + x \frac{1}{2}$ ; degree 4: (quartic), leading coefficient:  $-\sqrt{7}$
- 8. not a polynomial function
- 9. The function is not in standard form so the wrong term was used to classify the function; f is a polynomial function. The degree is 4 and f is a quartic function. The leading coefficient is -7
- 10. The function is not a polynomial function; f is not a polynomial function. The term  $-9\sqrt{x}$  has an exponent that is not a whole number.
- 11. h(-2) = -46

- **12.** f(-7) = 16,193
- **13.** g(8) = -43
- **14.** g(-12) = 2101
- **15.**  $p(\frac{1}{2}) = \frac{45}{4}$
- **16.**  $h\left(-\frac{1}{3}\right) = \frac{76}{27}$
- 17.  $h(x) \to -\infty$  as  $x \to -\infty$  and  $h(x) \to -\infty$  as  $x \to \infty$
- **18.**  $g(x) \to -\infty$  as  $x \to -\infty$  and  $g(x) \to \infty$  as  $x \to \infty$
- **19.**  $f(x) \to \infty$  as  $x \to -\infty$  and  $f(x) \to \infty$  as  $x \to \infty$
- **20.**  $f(x) \to \infty$  as  $x \to -\infty$  and  $f(x) \to -\infty$  as  $x \to \infty$
- The degree of the function is odd and the leading coefficient is negative.
- The degree of the function is even and the leading coefficient is positive.